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Abstract—Graph matching is a fundamental graph theory
problem which has a broad application range including informa-
tion retrieval, pattern recognition, graph partitioning, chemical
structure analysis, protein function prediction, backup placement
and cellular coverage. This problem has gained attention in dis-
tributed computing as there are distributed matching algorithms
with asymptotically guaranteed time bounds and approxima-
tion ratios. On the other side, we do not know the practical
performance of these algorithms. In this paper, we provide
a detailed performance evaluation of asynchronous distributed
maximum weighted matching (MWM) algorithms. We assume
a message-passing system in CONGEST model in which the
message size is limited to O(logn) where n is the number of
nodes. This model is popular for energy-efficient networks such
as wireless sensor networks. We used a discrete event simulator,
SimPy, to model the assumed network structures. We provide the
implementations of Watthenhofer and Wattenhofer’s algorithm,
Hoepman’s algorithm, Lotker et al.’s algorithm and Lotker et
al.’s improvement algorithm. The results show that the greedy
algorithm of Hoepman performed best in approximating the
optimum result in all types of networks, even achieving an
approximation ratio of 0.99 in some instances. To the best of
our knowledge this is the first study which provides an extensive
performance evaluation of distributed MWM algorithms.

Keywords—Graph Matching, Distributed Computing, Perfor-
mance Evaluation.

I. INTRODUCTION

Given a graph G(V,E), the purpose of a matching algorithm
is to find a subset of edges M ⊆ E such that any vertex in V is
incident to at most one edge in M . The problem of maximizing
the number of edges in M is called the maximum cardinality
matching problem (MCM). Given a function w(e) ∈ R+

where e ∈ E, the total weights of edges in M is called
the weight of the matching. The problem to find the heaviest
matching is called the maximum weighted matching problem
(MWM). Matching problem has many variations (b-matching,
bipartite matching) and various applications such as pattern
recognition [1], information retrieval [2], graph partitioning
[3]–[6], chemical structure analysis [7], protein function pre-
diction [8], backup placement [9] and cellular coverage [10].

MWM can be computed in polynomial time in centralized
settings by the famous Blossom Algorithm of Edmonds [11].
For an extensive summary of centralized matching algorithms,
we refer the readers to the recent work of Lotker et al. [12].
Matching problem is studied much in distributed settings.
Considering unweighted graphs, Israeli and Itai [13] proposed

a 1
2 -approximation MCM algorithm which is still the best

algorithm in terms of worst case complexity. The basic idea of
the algorithm is to reduce the graph into a sparse one where
each node has a degree of at most 2, and to select edges on this
reduced graph. Reductions and selections are done randomly.
Reduction is realized as follows: Each node randomly selects
one of its neighbors and sends a matching proposal it. Having
received at least one proposal, the node randomly accepts
exactly one of them and rejects the others. Accepted edges
remain in the graph and the others are neglected until the
next round. Hence, each node has at most two active edges.
After reduction, selection is realized as follows: Each node
randomly selects one of (at most) two active edges. If an
edge is selected by both of its incident nodes, the nodes
are considered matched. Remaining nodes continue the same
procedure until they are matched or do not have any active
neighbor. The resulting matching is maximal, i.e. all of the
unmatched edges is incident to a matched edge. The expected
running time of the algorithm is O(log n). For a review of
distributed MCM algorithms we refer readers to [12].

For the distributed MWM problem, which is the main focus
of our work, many algorithms have been introduced in the
field. Wattenhofer&Wattenhofer’s distributed weighted match-
ing algorithm [14] (hereinafter called Wattenhofer’s Algorithm
or simply Wattenhofer) applies Israeli&Itai’s approach to the
weighted graphs. Basically, locally-light edges are removed
from the graph and a matching strategy similar to Israeli&Itai’s
approach are applied over the remaining edges. The algorithm
is proved to guarantee at least 1

5 of the maximum weighted
matching. On the deterministic side of distributed MWM
algorithms is Hoepman’s greedy algorithm [15]. Each node
greedily tries to match through the edge having the heaviest
weight. Locally-heaviest edges (which are heavier than all of
its incident edges) are guaranteed to be in the matching set
with this approach. Once its heaviest neighbor is matched
with another node, the node tries to match with the second
heaviest and so on, until it is matched with any one or does
not have any unmatched neighbor. This approach guarantees
a 1

2 -approximation at the cost of a time complexity of O(m),
where m is the number of edges. Lotker et al. [16] (here-
inafter called Lotker2009) combines Hoepman’s deterministic
and Wattenhofer’s randomized approaches. Their algorithm
divides the edges into classes and subclasses according to the
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TABLE I
THEORETICAL COMPARISON OF DISTRIBUTED MWM ALGORITHMS IN

CONGEST MODEL

Approx. Time Msg. Global
Requirement

Wattenhofer [14] 1
5 O(log2 n) O(n2 log2 n) none

Hoepman [15] 1
2 O(m) O(m) none

Lotker2009 [16] 1
4 −

ε
5 O(logn)a O(m)b α, β,

max(we)

Lotker2015 [12] 1
2 −

ε
5 O(logn)a O(m)b α, β,

max(we)
a In synchronous settings.
b This complexity is of our implementation, as it was not provided on the paper.

weights of edges and applies a randomized algorithm similar to
Israeli&Itai’s and Wattenhofer’s approaches. Since the classes
and subclasses does not have common edges, the matching
set of each class can be determined in parallel. The algorithm
then combines the resulting matchings of classes into a single
maximal matching by deterministically choosing one of the
matched edges according to their weights. This approach
guarantees a ( 14−

ε
5 )-approximation in O(log n) time. Lotker et

al. proposed a randomized synchronous ( 12−
ε
5 )-approximation

algorithm in [12] (hereinafter called Lotker2015) which ba-
sically improves the total weight of any given matching
(including an empty matching). According to the algorithm,
given a weighted graph G(V,E) and a valid matching M , each
unmatched edge has an augmenting gain, i.e. the increase in
the total weight of the matching when this edge is put into M
and all of its incident matched edges are removed from M . A
new weight function w′(e) is defined such that w′(e) is equal
to the augmenting gain of edge e. The augmenting gain of a
matched edge is considered to be 0. If any MWM algorithm
runs on graph G(V,E) using the new weight function w′(e),
then the resulting matching M ′ signifies an increase in the
given matching M . When M and a nonempty M ′ are wrapped
into a single matching, giving priority to M ′, the resulting
matching M ′′ is heavier than M . A summary of theoretical
complexities of the distributed MWM algorithms is in Table I

It is important to note that the original algorithms of
Lotker2009 and Lotker2015 assume synchronous network
model. We implemented this algorithms in asynchronous net-
work model; i.e. the system has neither a central scheduler nor
a fixed time frame for phases. We allow each node to enter the
next phase of the algorithm without waiting for other nodes to
finish the phase. Each message carries information about its
phase. A control mechanism exists for checking if a received
message belongs to the actual phase. If not, it is put in the
waiting queue to be executed later.

All of these algorithms run on CONGEST model [17]
in which communications between nodes are realized with
messages having size of O(log n) bits. Because of the limited
message size property, this model is very popular for energy-
efficient networks such as wireless sensor networks.

A. Our Contribution and Organization

In this work, we implement the aforementioned four dis-
tributed maximum weighted matching algorithms on a discrete
event simulator (SimPy [18]), and compare their performances
with respect to approximation ratio, running time and total
message count. We omit the distributed approaches which use
large messages [19]. To the best of our knowledge, this is
the first study which provides the implementation and perfor-
mance evaluation of distributed weighted matching algorithms.
In Section II, we describe the system model. In Section III,
we explain our experimental setup. We provide and discuss
test results in Section IV. Finally, conclusions are drawn in
Section V.

II. THE SYSTEM MODEL

Given a graph G(V,E), we consider a network with n nodes
and m edges, where n = |V | and m = |E|. We assume a
fully-distributed CONGEST network model [17] where each
node runs algorithms asynchronously. Nodes are connected
with weighted edges and each node has knowledge about the
weight of its incident edges and the id of its neighbors. A
round in our asynchronous model stands for a time step. We
measure the running time of the algorithms according to the
following rules:
• If a node vi sends a message to its neighbor vj at time
t, vj receives the message at time t+ 1.

• If a node receives a message at time t, it tries to execute
the message at time t. If the received message cannot
be executed at that time for any reason (i.e. the node
is waiting for another type of message or the message
belongs to a future phase of the algorithm), it is delayed
for one unit of time.

• Each node starts to execute algorithms at time t0 = 1.
Each node vi ∈ V has a pointer pi which holds the id of its

matching partner. If two neighbors point to each other, they
are considered matched. If a node is not matched, its pointer
value is NULL.

III. EXPERIMENTAL SETUP

We implemented the algorithms on SimPy [18], a discrete
event simulator written in Python programming language.
It makes use of the coroutine-like functionality of Python
language which enables a function to suspend and resume
execution at certain locations [20].

We considered each node as a process in SimPy. We built
a message passing model which uses the shared resources
capability of SimPy. A central process, as we call Message-
Manager, is another process which manages the transmission
of messages.

We used 3 types of topology generation methods for our
networks:
• Erdös-Rényi model: Random network model with low

clustering [21].
• Watts-Strogatz model: Small-world random networks

with high clustering [22].

104ISBN: 978-1-4673-9608-0 ©2016 IEEE



TABLE II
APPROXIMATION RATIO VS. NUMBER OF NODES, WEIGHT DISTRIBUTION: UNIFORM. DENSITY IS FIXED AT 0.1 FOR ERDÖS-RENYI AND

WATTS-STROGATZ NETWORKS, AND RANGES FROM 0.2 TO 0.05 AS THE NODE COUNT INCREASES IN GEOMETRIC NETWORKS.

Erdös-Renyi Watts-Strogatz Geometric
N Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015

100 0.91 0.77 0.69 0.71 0.93 0.80 0.69 0.74 0.94 0.77 0.61 0.74
200 0.93 0.76 0.62 0.74 0.94 0.75 0.63 0.72 0.94 0.76 0.61 0.74
300 0.94 0.76 0.58 0.74 0.95 0.77 0.58 0.74 0.94 0.76 0.62 0.73
400 0.95 0.75 0.54 0.74 0.95 0.76 0.56 0.75 0.94 0.77 0.62 0.74
500 0.96 0.75 0.51 0.76 0.96 0.75 0.52 0.75 0.94 0.77 0.62 0.71
600 0.96 0.75 0.50 0.76 0.96 0.75 0.49 0.63 0.94 0.77 0.62 0.72
700 0.96 0.75 0.48 0.77 0.97 0.76 0.48 0.71 0.94 0.77 0.64 0.72
800 0.97 0.75 0.46 0.77 0.97 0.76 0.46 0.78 0.93 0.77 0.63 0.73
900 0.97 0.76 0.46 0.76 0.97 0.75 0.42 0.72 0.93 0.77 0.64 0.73
1000 0.97 0.75 0.44 0.79 0.97 0.75 0.44 0.78 0.93 0.77 0.64 0.72

TABLE III
APPROXIMATION RATIO VS. NUMBER OF NODES, WEIGHT DISTRIBUTION: GAUSS. DENSITY IS FIXED AT 0.1 FOR ERDÖS-RENYI AND

WATTS-STROGATZ NETWORKS, AND RANGES FROM 0.2 TO 0.05 AS THE NODE COUNT INCREASES IN GEOMETRIC NETWORKS

Erdös-Renyi Watts-Strogatz Geometric
N Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015

100 0.93 0.75 0.84 0.85 0.94 0.76 0.86 0.88 0.96 0.74 0.76 0.84
200 0.96 0.74 0.79 0.84 0.96 0.74 0.79 0.84 0.96 0.74 0.77 0.84
300 0.96 0.73 0.74 0.83 0.97 0.74 0.75 0.83 0.96 0.74 0.78 0.84
400 0.97 0.73 0.71 0.83 0.97 0.72 0.71 0.83 0.96 0.74 0.78 0.84
500 0.97 0.72 0.65 0.85 0.97 0.72 0.67 0.83 0.96 0.76 0.79 0.84
600 0.98 0.71 0.65 0.85 0.98 0.71 0.65 0.84 0.96 0.75 0.79 0.84
700 0.98 0.70 0.61 0.85 0.98 0.71 0.61 0.84 0.96 0.75 0.79 0.83
800 0.98 0.71 0.59 0.84 0.98 0.70 0.60 0.85 0.96 0.75 0.81 0.84
900 0.98 0.70 0.58 0.85 0.98 0.70 0.58 0.85 0.96 0.75 0.81 0.85
1000 0.98 0.70 0.56 0.85 0.98 0.70 0.57 0.85 0.96 0.76 0.81 0.85

• Geographical network model: Given a graph G(V,E)
and coordinates for each node in V , any two nodes are
considered connected if their euclidean distance is smaller
than a constant value r.

We used NetworkX library [23] for generating Erdös-
Rényi and Watts-Strogatz models. We also used its maximum
weighted matching module for finding the optimum match-
ing, which is an efficient implementation of Edmond’s exact
algorithm [11] and presented in [24].

For each topology generated according to the models above,
we assigned edge weights randomly using two different dis-
tributions:
• Uniform distribution with minimum weight of 10 and

maximum weight of 100
• Gaussian distribution with (µ = 50, σ = 12).
For Erdös-Rényi and Watts-Strogatz models, we generated

networks with three different density values: 0.05, 0.1 and 0.2.
For each 3-tuple of topology, weight distribution and den-

sities, we created 10 network instances.
For Lotker2009 and Lotker2015, we assumed that ε = 1/4,

which makes α = 5 and β = 5
4 .

IV. COMPUTATIONAL RESULTS

A. Approximation ratio

Tables II and III provide approximation ratios of algo-
rithms for both uniform and Gaussian weight distributions,
respectively. Density is fixed at 0.1 for small-world networks

and ranges from 0.2 to 0.05 as the graph size increases in
geometric networks. Hoepman’s greedy algorithm performs
best in all types of graphs and weight distributions with
an outstanding approximation ratio around 0.97, which, in
other words, means that the greedy algorithm is able to
approximate the optimum matching value with an error of 3%.
Interestingly, its approximation ratio increases as the network
size gets greater, especially in Erdös-Rényi and Wattz-Strogatz
networks.

When the weights are distributed uniformly, the approxi-
mation ratios of Wattenhofer’s Algorithm and Lotker2015 are
similar and around 0.77. However, in case of normally dis-
tributed weights, Lotker2015’s approximation ratio increases
to 0.85, while Wattenhofer’s performance decreases to 0.7.
Recall that Lotker2015 is able to detect augmenting paths
of length 3 with positive weight gain. Also note that the
augmenting gain of the unmatched edges is more likely to
be positive in case of normally distributed edge weights
since the weights of incident edges are expected to be closer
to each other. These two observations explain the relative
success of Lotker2015 over Wattenhofer’s when the weights
are distributed normally.

In small-world networks (Erdös-Rényi and Wattz-Strogatz),
Lotker2009’s approximation ratio is close to that of Watten-
hofer’s and Lotker2009’s when the size of the graph is less
than 200. However its performance drops significantly in larger
graphs.
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TABLE IV
COMPUTATION TIME VS. NUMBER OF NODES, WEIGHT DISTRIBUTION: UNIFORM. DENSITY IS FIXED AT 0.1 FOR ERDÖS-RENYI AND

WATTS-STROGATZ NETWORKS, AND RANGES FROM 0.2 TO 0.05 AS THE NODE COUNT INCREASES IN GEOMETRIC NETWORKS.

Erdös-Renyi Watts-Strogatz Geometric
N Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015

100 30.2 33.0 125.9 353.2 27.8 33.8 110.9 335.1 58.9 45.9 222.0 959.0
200 48.2 54.3 203.2 877.3 43.8 50.4 184.5 801.7 63.4 52.4 233.1 1124.7
300 66.9 68.7 282.7 1468.9 62.7 67.8 250.7 1357.9 61.2 60.1 224.4 1086.2
400 85.6 88.7 373.7 2113.4 79.9 79.9 352.3 1940.0 57.2 53.6 215.2 992.9
500 102.6 109.7 461.4 2589.7 94.6 99.0 448.9 2406.3 56.1 51.1 214.2 920.3
600 121.4 116.4 484.0 3142.2 111.5 118.7 468.4 2526.0 56.0 53.2 208.2 951.7
700 136.8 131.9 621.6 3712.7 128.6 130.8 574.9 3165.0 54.2 53.5 216.9 905.1
800 152.7 138.7 718.3 4296.1 144.1 148.1 683.5 3938.4 54.9 50.9 206.1 889.0
900 172.0 154.3 884.0 4323.9 158.0 152.5 726.6 4320.3 49.5 53.9 200.6 814.6
1000 190.8 170.9 874.6 5064.6 173.7 167.3 822.5 5132.0 49.5 52.2 210.6 796.8

TABLE V
COMPUTATION TIME VS. NUMBER OF NODES, WEIGHT DISTRIBUTION: GAUSS. DENSITY IS FIXED AT 0.1 FOR ERDÖS-RENYI AND WATTS-STROGATZ

NETWORKS, AND RANGES FROM 0.2 TO 0.05 AS THE NODE COUNT INCREASES IN GEOMETRIC NETWORKS

Erdös-Renyi Watts-Strogatz Geometric
N Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015

100 30.5 36.2 177.6 396.0 28.0 33.0 155.9 329.6 61.7 41.6 308.5 1014.0
200 48.6 50.1 306.4 934.1 46.2 53.1 282.1 795.7 64.3 55.1 368.1 1176.5
300 68.3 73.4 443.2 1568.8 60.3 68.5 415.0 1478.4 59.9 61.7 351.3 1128.9
400 84.9 91.1 529.1 2226.5 78.9 91.9 535.4 2102.6 58.4 53.8 320.8 1245.8
500 102.2 106.6 658.8 3911.6 95.3 107.8 633.0 3038.2 57.2 53.6 311.2 1124.4
600 121.8 117.6 741.2 5078.4 109.2 117.8 774.8 4570.0 54.8 52.0 304.4 1024.2
700 135.4 131.6 920.6 6289.8 126.2 135.4 871.6 5443.6 55.6 53.4 302.2 1058.0
800 155.8 157.0 967.2 6975.0 144.2 154.6 960.4 6751.8 49.6 48.0 279.4 1018.0
900 170.4 154.2 1088.0 8181.4 158.2 165.0 1116.0 8032.4 49.2 54.4 309.4 1002.4
1000 185.0 170.2 1255.4 9211.0 174.8 185.4 1172.4 8547.8 51.2 54.8 282.6 984.4

TABLE VI
TOTAL MESSAGE COUNT VS. NUMBER OF NODES, WEIGHT DISTRIBUTION: UNIFORM. DENSITY IS FIXED AT 0.1 FOR ERDÖS-RENYI AND

WATTS-STROGATZ NETWORKS, AND RANGES FROM 0.2 TO 0.05 AS THE NODE COUNT INCREASES IN GEOMETRIC NETWORKS

Erdös-Renyi Watts-Strogatz Geometric
N Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015

100 751.5 3435.4 5073.4 9050.6 743.6 3546.8 5052.0 9034.8 1711.8 8843.7 10091.4 19710.9
200 2768.6 13587.1 16845.1 32444.7 2807.7 13932.0 17053.0 32873.5 3421.8 17310.7 20201.9 39547.4
300 6081.4 31313.8 34993.5 70070.0 6110.3 31391.7 35001.0 70674.6 4888.6 24962.1 29282.8 56624.8
400 10858.6 56585.5 59137.1 122301.7 10828.8 56412.8 59852.2 122371.7 6047.1 29844.5 36487.4 70193.5
500 16896.9 88608.6 88441.7 187426.1 16811.8 87747.6 89032.5 187685.5 7135.9 35565.1 43230.5 81412.5
600 24055.1 126879.3 124530.7 267690.7 24055.0 126962.2 124300.0 239513.2 8137.3 40716.5 49671.2 95599.8
700 32494.2 170849.8 165867.2 361087.5 32291.0 173115.8 165926.6 342774.1 9130.1 45719.8 56517.7 107760.8
800 42251.8 226209.2 213032.0 469449.9 42016.8 226973.0 212898.5 468854.8 10049.8 50014.9 62440.0 119214.8
900 53131.2 284697.6 266850.3 575553.5 53409.8 283869.7 265504.7 560081.0 10779.5 53548.6 67351.5 127480.1
1000 65188.6 351954.8 326368.0 724479.0 64594.8 350013.0 325613.8 725492.7 11438.7 56777.7 72225.0 135745.8

TABLE VII
TOTAL MESSAGE COUNT VS. NUMBER OF NODES, WEIGHT DISTRIBUTION: GAUSS. DENSITY IS FIXED AT 0.1 FOR ERDÖS-RENYI AND

WATTS-STROGATZ NETWORKS, AND RANGES FROM 0.2 TO 0.05 AS THE NODE COUNT INCREASES IN GEOMETRIC NETWORKS

Erdös-Renyi Watts-Strogatz Geometric
N Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015 Hoepman Watten Lot2009 Lot2015

100 761.0 3902.0 8466.3 12111.3 740.1 3946.7 8464.2 11993.3 1719.2 9507.9 16850.0 25489.6
200 2810.2 15323.9 28551.1 42546.2 2817.9 15888.3 28671.3 42309.6 3535.7 19738.3 34350.4 52034.2
300 6238.1 35110.9 58288.9 89745.0 6162.6 34797.1 58915.0 89988.2 4860.0 27289.0 47763.7 71854.0
400 10767.2 61659.0 95485.1 150979.3 10890.1 62392.3 96880.1 153103.7 10142.8 34010.6 60892.6 110004.2
500 16628.8 96654.2 134175.8 276411.0 16723.7 97358.0 139536.4 238227.1 7134.6 40378.6 73306.6 130379.2
600 24207.2 136523.6 193331.4 396684.4 23970.0 137955.2 191170.6 394047.2 8073.4 45357.0 83248.0 148635.6
700 32746.6 185536.2 247769.0 526139.2 32860.2 188475.0 248040.4 526800.0 9226.0 50270.4 93056.0 161381.2
800 42965.4 251776.6 305900.0 671498.6 42705.0 244472.8 311612.0 674437.8 10005.0 55037.4 103961.8 178673.8
900 53775.6 309016.2 376844.8 839197.8 54166.6 312700.6 376003.2 839720.8 10858.0 60849.8 115391.2 198741.6

1000 67127.8 383844.8 445429.6 1018570.8 67126.4 386209.6 454900.0 1024084.4 11491.0 64283.8 121260.0 213855.0
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TABLE VIII
THE EFFECT OF DENSITY ON APPROXIMATION PERFORMANCE IN SMALL-WORLD NETWORKS. NODE SIZE IS FIXED AT 300. D IS THE DENSITY.

Weight Distribution: Uniform Weight Distribution: Gauss
Erdös-Renyi Watts-Strogatz Erdös-Renyi Watts-Strogatz

D Hoep Watt Lot09 Lot15 Hoep Watt Lot09 Lot15 Hoep Watt Lot09 Lot15 Hoep Watt Lot09 Lot15
0.10 0.93 0.76 0.59 0.75 0.94 0.77 0.61 0.76 0.96 0.74 0.76 0.84 0.97 0.73 0.73 0.83
0.20 0.96 0.76 0.49 0.80 0.95 0.75 0.51 0.80 0.97 0.72 0.66 0.85 0.98 0.71 0.64 0.85
0.30 0.97 0.75 0.45 0.83 0.97 0.76 0.46 0.82 0.98 0.70 0.57 0.85 0.98 0.70 0.57 0.84
0.40 0.98 0.75 0.43 0.85 0.98 0.75 0.45 0.84 0.98 0.70 0.55 0.85 0.98 0.70 0.53 0.84
0.50 0.98 0.76 0.42 0.86 0.98 0.76 0.42 0.86 0.98 0.70 0.51 0.84 0.98 0.70 0.49 0.85
0.60 0.98 0.75 0.41 0.87 0.98 0.76 0.41 0.87 0.98 0.69 0.47 0.84 0.99 0.69 0.47 0.84
0.70 0.98 0.75 0.41 0.86 0.99 0.76 0.42 0.87 0.99 0.67 0.45 0.84 0.98 0.68 0.46 0.85
0.80 0.99 0.75 0.42 0.88 0.98 0.74 0.42 0.87 0.99 0.68 0.45 0.84 0.99 0.68 0.44 0.85
0.90 0.99 0.76 0.41 0.86 0.99 0.75 0.41 0.88 0.99 0.67 0.42 0.85 0.99 0.68 0.43 0.85
1.00 0.99 0.76 0.43 0.87 0.99 0.76 0.42 0.88 0.99 0.67 0.42 0.84 0.99 0.68 0.41 0.86

B. Time

Tables IV and V provide computational results for the
total time required for each algorithm in different types of
networks. Density is fixed at 0.1 as well. The results show that
Hoepman’s and Wattenhofer’s algorithms converge quicker
than other algorithms. Total time step required in a network
with n nodes is 0.2n for Hoepman, 0.15n for Wattenhofer
and around 0.8n for Lotker2009. Asynchronous version of
Lotker2009 performs slightly worse than Hoepman and Wat-
tenhofer, while, Lotker2015 performs dramatically worse than
other algorithms as the required number of time step is 5 times
of the total number of nodes in small-world networks.

Recall that Lotker2015 is originally a synchronous algo-
rithm, consisting of phases and solves a black-box MWM
algorithm (which is Lotker2009 in our simulations) at each
phase. At the end of each phase, nodes update their status
and have to inform their neighbors through messages. Besides,
the calculation of augmenting gain of an edge requires the
actual weight function value of its incident matched edges,
which amounts to further messages. As we see in the next
subsection, the algorithm uses higher number of messages than
other algorithms. Since we assume that transmission delay of
message takes a unit of time, this explains the high amount of
time requirement of the algorithm.

Unlike in small-world networks, the density is not fixed
in our geometric network instances and the graphs become
sparser when the number of nodes increases. In the geometric
column of Tables IV and V, the total time required for the
algorithms have a non-increasing trend, which means the
required time depends on the density of the network, rather
than the total number of nodes.

When we compare the results in Table IV with Table V, we
see that Lotker2009 and Lotker2015 require more computation
time when the weights have a Gaussian distribution. In these
algorithms, classes and subclasses are formed with respect
to the weights of edges. Thus, edges having similar weights,
which is more-likely in case of normally distributed weights,
will be in the same subclass while some classes may be empty.
Consequently, the algorithm will require more steps to solve
the crowded subclasses.

C. Total message count
In Table I, we showed that the message complexities of the

algorithms are highly dependent upon the number of edges.
Therefore we can compare the message sizes of the algorithms
with respect to the number of edges in the network instances.
Note that m = Dn(n−1)

2 where D is the density, and n and m
are the number of nodes and edges, respectively.

In Hoepman’s algorithm, at most two messages are expected
to be transmitted through each edge. Our results in Tables VI
and VII verify this expectation as the total number of messages
in a network is 1.5 times of the total number of edges, in
average.

In Wattenhofer’s and Lotker2009’s algorithms, the number
of messages are expected to be similar since both algorithms
depend on the same approach: Israeli&Itai’s MCM algorithm.
Our results certify this statement, too, as they have the
same trend in Tables VI and VII. However, since Lotker2009
solves randomized MCM algorithm for a certain number of
subclasses in parallel, the size of messages in Lotker2009 is
greater than that of Wattenhofer. In other words, even though
the number of messages are close to each other, the number
of bits transmitted until termination is relatively higher in
Lotker2009.

The difference between the number of messages required for
Wattenhofer and Lotker2009 in geometric network topologies
is due to the change in density. In geometric instances,
while the size of the network becomes greater, the graph
becomes sparser. Thus the difference between these algorithms
in the geometric network instances means that Wattenhofer’s
message complexity is dependent on the number of nodes,
while that of Lotker2009 is dependent on the number of edges.

As we expected and explained in the previous subsection,
Lotker2015 requires the highest number of messages, which
is roughly 14 messages per edge in small-world networks and
25 messages per edge in geometric networks.

D. The effect of density on approximation ratio
In the tables discussed so far, we listed results of small-

world instances with a fixed density of 0.1 for the purpose of
clarity. The table in Table VIII provides the results when the
graph size is fixed at 300 and density (D) ranges from 0.1 to
∼ 1 (complete graph).
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Results show that the success of Hoepman gets even better
when the graph becomes denser and it reaches an approxima-
tion ratio of 0.99 in average in complete graphs.

Wattenhofer’s approximation ratio is not affected by the
density under uniform weight distribution since the algorithm
omits the locally-lighter edges at the beginning of the al-
gorithm, regardless of the density. When the weights are
distributed normally, its approximation ratio drops slightly.

Lotker2009’s performance drops from 0.6 to 0.42 in uniform
weight distribution and from around 0.73 to 0.41 in Gaussian
weight distribution as the graphs become denser. The reason
might be that the size of each subclass gets large in case of
denser graphs and since the edges are chosen randomly in each
subclass, randomization causes the elimination of good edges
at early phases, as in Wattenhofer’s algorithm.

V. CONCLUSION

We presented the extensive performance evaluations of
four asynchronous distributed weighted maximum matching
algorithms running in CONGEST model. We implemented
algorithms in a discrete event simulator and compared their
performances with respect to approximation ratio, convergence
time and message count in different types of random networks.

Results show that Hoepman’s greedy algorithm outperforms
all other algorithms in all performance criteria and in all net-
work topologies. Despite its theoretical approximation guaran-
tee of 1

2 of the optimum, it had an outstanding approximation
ratio of 0.97 in sparse small-world network instances and even
reaches 0.99 in denser instances. It realizes this using very low
number of messages compared to the other algorithms.

Wattenhofer’s algorithm and Lotker’s improvement algo-
rithm (Lotker2015) had similar approximation ratios (around
0.78) in networks having uniform weight distribution, while
Lotker2015 had 15% better approximation ratios than Wat-
tenhofer in case of normally distributed weights. However
Lotker2015 required a great amount of time and messages to
achieve these results, while Wattenhofer’s time requirement is
the lowest in all of the algorithms. Lotker2015’s high message
and time requirement is mainly due to the facts that it was
designed as a synchronous algorithm and it requires relatively
high amount of information sharing between neighbors.

If one wants better practical approximation ratios for the
distributed maximum weighted matching problem, an effective
approach could be to develop an improvement algorithm on
top of the greedy algorithm. Note that although Lotker2015
is an important improvement algorithm, it cannot improve the
weight of a solution of Hoepman’s greedy algorithm since
the augmenting gain of all of the unmatched edges would be
non-positive. An improvement algorithm running on top of the
greedy algorithm and detecting longer augmenting paths with
positive augmenting gain may give even better approximations
for the optimum solution.
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