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ABSTRACT 

Graph coloring is a widely used technique for allocation of time and frequency slots to nodes, for forming 

clusters, for constructing independent sets and dominating sets on wireless ad hoc and sensor networks. 

A good coloring approach should produce low color count as possible. Besides, since the nodes of a 

wireless ad hoc and sensor network operate with limited bandwidth, energy and computing resources, the 

coloring should be computed with few message passing and computational steps. In this paper, we 

provide a performance evaluation of distributed synchronous greedy graph coloring algorithms on ad 

hoc and sensor networks. We provide both theoretical and practical evaluations of distributed largest 

first and the distributed version of Brelaz’s algorithm. We showed that although distributed version of 

Brelaz’s algorithm produces less color count, its resource consumption is worse than distributed largest 

first algorithm. 

 

KEYWORDS 

Mobile Ad hoc Networks, Distributed Graph Coloring, Distributed Largest First Algorithm, Brelaz’s 

Algorithm. 

1. INTRODUCTION 

The availability of wireless devices have been increased rapidly in recent years and number of 

these devices reached to enormous amounts. So need for self-organizing networks not require 

pre-established infrastructure become inevitable. Ad-hoc networks consists of many 

autonomous wireless devices that communicates with each other via radio signals. Ad-hoc 

networks can be static or mobile. In static ad-hoc networks, positions of devices do not change 

after it joined the network, whereas, in mobile ad-hoc networks, devices can move arbitrarily.  

One of most common problems for wireless ad-hoc networks is accessing the shared wireless 

medium. If two or more neighbor nodes in an ad hoc network transmit at the same time, they 

cause interference and receiver node hears only noise. Media access control (MAC) protocols 

for wireless ad hoc and sensor networks try to coordinate the access to the shared medium. 

MAC protocols use three ways, time (TDMA), frequency (FDMA), or code division multiple 

access (CDMA) schemes to divide the channel among the nodes. Channel assignment is an NP-

Hard problem [1]. Many methods have been proposed to design efficient MAC protocols for 



wireless ad hoc and sensor networks [2-5]. TDMA, FDMA, and CDMA protocols are 

implemented by a vertex coloring of the graph constructed according to interference relations 

[6]. Many MAC protocols use distributed graph coloring for coordinating access to the shared 

wireless medium [7-16].  

Another application of distributed graph coloring is finding maximal independent sets and 

dominating sets in wireless networks.  A maximal independent set (MIS) in an undirected graph 

G = (V, E) is a maximal collection of vertices I ⊆ V with the restriction that no pair of vertices 

in I are adjacent. A dominating set (DS) is a collection of vertices D ⊆ V with the restriction that 

each vertex in V is either in D or adjacent to one vertex in D.  These two problems are strongly 

related to graph coloring problem. In solution of optimal graph coloring problem, each set of 

vertices that share same color in a graph forms a maximal independent set [17].  

 

In wireless ad hoc and sensor networks, partitioning the nodes into clusters is also very 

important. Clustering is a fundamental approach to manage the wireless ad-hoc networks. In 

clustered networks, nodes can be cluster members or cluster heads. A cluster member is an ordinary 

cluster node which only sends its request to its cluster head. A cluster head collects requests from 

cluster members and manage inter cluster operations [18]. The most important advantage of 

clustering is minimizing the amount of data to be exchanged between nodes. Clustering also 

enables systems to adapt dynamically with changing network configurations [19]. Most greedy 

clustering algorithms propose methods for finding independent or dominating sets of nodes 

which can act as set of clusterheads. Several papers use graph coloring for constructing 

independent or dominating sets in wireless networks [20-22].  
 

Wireless ad hoc and sensor networks consist of devices with limited power and storage 

capabilities. Many wireless devices operate with only batteries so they have to keep 

computational time as short as possible. Distributed algorithms that operate on wireless devices 

communicate with each other with message passing and there is no central coordination. So, the 

nodes have to use algorithms which do not need high amount of message passing. These 

constraints make us choose distributed algorithms with as little computational time and message 

passing as possible. Selection of appropriate distributed graph coloring algorithm for wireless ad 

hoc networks is based on these constraints [11].  

The rest of this paper is organized as follows. In Section 2, the background information for ad-

hoc network modeling and distributed graph coloring problem are given. In Section 3, the 

related work about distributed graph coloring algorithms for ad-hoc networks are surveyed. The 

implemented algorithms and performance evaluations are described in detail in Section 4 and 

Section 5 respectively. Lastly, conclusions are given in Section 6. 

2. BACKGROUND 

2.1 Network Model 

A wireless ad hoc or sensor network assumed to have following properties: 

 Each node in the network has a unique id. 

 There are directional links between nodes. This means that if there is a link from node u 

to node v, there is also a link from node v to node u. 

 Each node knows ids of its neighbors in its transmission range.   

With considering these properties, the set of nodes in an ad-hoc or sensor network can be 

modeled as an undirected graph G = (V, E). In graph G, the nodes are vertices and links are 

edges that existing between two vertices if they are close enough to communicate directly with 

each other. We denote the number of nodes in the network by n = |V| and the maximum degree 



of G by . In Figure 1, in the left side a sample ad-hoc network with 4 nodes and their 

transmission ranges is given and in the right side its corresponding undirected graph is given. 

 
Figure 1. A sample ad-hoc network and its graph representation 

2.2. Graph Coloring 

Graph coloring is defined as coloring the elements of a graph with using the minimum number 

of colors with the restriction that any two adjacent element of the graph cannot have the same 

color. Graph coloring has two common forms: vertex coloring, edge coloring. The most 

common form is vertex coloring and it is coloring vertices of a graph that any adjacent vertices 

have the same color. Very similar to vertex coloring, edge coloring aims to color the edges of a 

graph that any adjacent edges have the same color. In this paper, we refer graph coloring as 

vertex coloring. The coloring of a graph G = (V, E) is a mapping c: v   s, where s is a set of 

colors, such that if vw   E then c(v)   c(w). This means that any adjacent vertices are not 

colored with the same color. The chromatic number ( )G  is the minimum number of colors 

needed for a coloring of a graph G. A graph G is k-chromatic, if ( )G k  , and G is k-

colorable, if ( )G k  [23]. 

3. RELATED WORK 

Many methods have been proposed to solve graph coloring problem. It is an easy case to decide 

if a given graph can be colored with 1 color or 2 colors. But it is NP-complete to decide if a 

given graph has a k-coloring for 3k  . It is also NP-hard to find the chromatic number ( )G of 

a given graph. It is also difficult to find an approximation ratio for chromatic number, it is NP-

hard to approximate the chromatic number within n
1−ε

, where 0  . 

Chromatic number of a graph can be found in polynomial time for some special graphs. To find 

that a given graph can be colored with 2 colors is equal to find that it is a bipartite graph or not. 

Testing for bipartiteness can be done using depth-first search in linear time. For other special 

classes of graphs such as chordal graphs, cycles, wheels, ladders, trapezoid graphs chromatic 

numbers can be computed in polynomial time [25, 26]. 

Some exponential-time exact algorithms have been proposed to find k-coloring of a graph. The 

easiest exact approach is making a brute-force search for a k-coloring. In the brute force search 

we should consider each of the k
n
 assignments of k colors to n vertices and check for each that 

any adjacent vertex do not share the same color. To find the chromatic number, brute force is 

done for every k = 1, ..., n-1, n and the minimum value of k with a legal coloring is chromatic 

number. This procedure can be only used for small graphs. Other exact algorithm for finding 

chromatic number in O(2.415 )n
time uses a dynamic programming approach and puts a bound 



on the number of maximal independent sets [27]. Yate’s algorithm uses the principle of 

inclusion–exclusion and find that if a graph is k-colorable or not inO(2 n)n
time for any k [28]. 

For finding 3- and 4-colorability of a graph O(1.3289 )n
 time and O(1.7504 )n

time algorithms 

have been proposed recently [29, 30]. 

The greedy algorithms for graph coloring problem considers the vertices in a specific order  and 

assigns to the smallest available color not used by any adjacent vertices. The fastest and easiest 

heuristic is First Fit (FF) algorithm. FF sequentially assigns a vertex with the lowest possible 

color and its time complexity is ( )O n . In other important heuristics, vertices are ordered 

according to their degrees. If the vertex with maximum degree is selected to be colored, then 

this heuristic is called Largest First (LF) algorithm [31]. Time complexity of LF is
2( )O n . 

Another heuristic due to Brélaz establishes the ordering dynamically while the algorithm 

proceeds, choosing next the vertex adjacent to the largest number of different colors. The 

number of different colors used by neighbors of a node is called saturation degree of that node, 

so Brelaz’s algorithm is also called Dsatur algorithm [32]. Dsatur’s time complexity is
3( )O n .  

Many distributed algorithms have been proposed for graph coloring problem. The most 

important issue in distributed approach is breaking the symmetry between nodes. It is because 

deterministic algorithms cannot find a legal coloring of a symmetric graph. Randomized 

algorithms are used to overcome this problem. The state-of-art randomized algorithms for graph 

coloring are faster than deterministic algorithms. An ( )O  -coloring can be computed in a 

randomized way in ( log )O n time where   is the maximum degree of the graph. [33]. Using 

randomization, a ( 1) -coloring of a graph can be found with an algorithm based on finding 

maximal independent set of the graph [20] and it is an (logn)O time algorithm. The fastest 

randomized algorithm uses the multi-trials technique of Schneider and Wattenhoffer. By this 

technique, ( 1) -coloring takes (log log )O n  time and to find an 

1 1/log*( log )nO n coloring takes O(log n) time [34]. 

Linial studied the lower bound of time complexity of distributed graph coloring in [35]. The 

main result of [35] is (log* )n time is lower bound for coloring a ring with a constant number 

of colors. Some of best deterministic algorithms to compute a ( 1) -coloring have time 

complexities of 
log

(2 )
n

O  and O( log log n)   [36, 37]. The fastest deterministic 

algorithm for ( 1) -coloring for small Δ runs in time O( ) log*( ) / 2n  . This result is is 

optimal in terms of n because according to Linial’s lower bound the constant factor 1/2 cannot 

be improved [38]. For special graph classes, there are more efficient deterministic algorithms. 

For rings and bounded degree graphs, a ( 1) -coloring can be computed in O(log n) time 

[39, 40]. This time complexity is also applied to much larger class of graphs with bounded local 

independent sets [41]. In particular, these graph classes contains most of the graph classes that 

are used to model wireless ad hoc and sensor networks [11].  

Greedy approach is also used to compute distributed graph coloring problem. The Largest First 

and Brelaz’s heuristics are applied to graphs in a distributed setting; nodes compute minimal 

colorings according to local and neighbors’ data. Distributed version of LF algorithm is called 

Distributed Largest First (DLF) and studied in [42]. Brelaz’s saturation degree heuristic was 

implemented for parallel computers in [43], but it has not been implemented for a distributed 

system. Due to their implementation simplicity, they are appropriate for many applications. 



Details of implemented greedy algorithms are explained in the next sections. Performance 

evaluation of distributed greedy graph coloring algorithms in many aspects is also provided.  

4. ALGORITHMS 

Greedy distributed graph coloring algorithms are simpler than the fast deterministic and 

randomized algorithms mentioned before.  They are also easier to implement on large graphs, 

they compute optimal colorings for most general graphs and optimum results for bipartite 

graphs. For many applications, the number of used colors and total messages sent between 

nodes are optimal.  

4.1. DLF 

Distributed Largest First (DLF) algorithm [42] is based on sequential LF algorithm. The main 

assumptions of the algorithm are there is no shared memory and each processor knows only its 

own links and its unique identifier. They aim these units to compute a coloring of the associated 

graph without any other information about the structure of G. Another assumption is that the 

system is synchronized in rounds. The number of rounds will be measure of efficiency. In each 

round, the nodes with largest degrees are selected to be colored. In [42] they claim that, 

1. The algorithm does not use colors more than ( 1) colors. 

2. At each round at least one node gets colored. 

3. In each round, in whole graph at most one new color can be assigned.  

In DLF algorithm, each vertex has three parameters: degree: deg(v), random value: rndvalue(v), 

palette of forbidden colors, which were used by its neighbors: usedcolor(v) (initially empty). To 

find the priority between two node u and v, we follow the following rules: 

deg(v) > deg(u) 

or 

(deg(v) = deg(u)) AND (rndvalue(v) > rndvalue(u)) 

In the implementation of DLF, each node sends four types of messages: DATA messages are for 

informing neighbors about its own degree, rndvalue and legal color; COLOR messages are for 

informing neighbors the color it used, so neighbors can update their usedcolor list. Legal color 

means the lowest numbered color that a node wants to use if it has the highest priority; START 

messages are send by a system node to start new round and END messages are sent by the 

system node to end application.  

The pseudocode of DLF is as follows. During each round every uncolored vertex v executes the 

following five steps: 

1. Choose parameter rndvalue(v). 

2. Send to all neighbors the following parameters: deg(v), rndvalue(v), and the first legal 

color (not on the list of forbidden colors). 

3. Compare its own parameters with these received from the neighbors and check which 

vertex has the highest priority. 



4. If vertex v has the highest priority, keep the proposed color and stop. 

5. If not, update list usedcolor(v). 

In Figure 2, a sample execution of DLF algorithm is shown. DLF algorithm colors the graph 

with 3 colors in 3 rounds. In first round, the node with maximum degree is colored with first 

legal color, in the next rounds the uncolored nodes with maximum degrees in their 

neighborhood are colored with their first legal color.  

 
Figure 2. A sample execution of DLF algorithm 

4.2 D_Dsatur 

The sequential Dsatur algorithm [32] of Brelaz is a sequential coloring algorithm with a 

dynamically established order of the vertices. The degree of saturation of a vertex x, degs(x), is 

the number of different colors at the vertices adjacent to x.  Dsatur starts by assigning lowest 

numbered color to a vertex of maximal degree. The vertex to be colored next is a vertex x with 

maximal degs(x). The distributed version of Brelaz’s Dsatur algorithm is called D_Dsatur in this 

paper. 

The implementation of D_Dsatur is same as DLF. Each node keeps same data structures as in 

DLF, but each node also keeps its saturation degree. The message types are also same as DLF. 

The pseudocode of D_Dsatur is as follows. During each round every uncolored vertex v 

executes the following five steps: 

1. Choose parameter rndvalue(v). 

2. If it is first round then send to all neighbors the following parameters: deg(v), 

rndvalue(v), and the first legal color, 

else send to all neighbors the following parameters: sat_deg(v), rndvalue(v), and the 

first legal color. 

3. Compare its own parameters with these received from the neighbors and check which 

vertex has the highest priority. 

4. If vertex v has the highest priority, keep the proposed color and stop. 

5. If not, update list usedcolor(v). 

In Figure 3, a sample execution of D_Dsatur algorithm is shown. D_Dsatur algorithm also 

colors the graph with 3 colors in 3 rounds. In first round, the node with maximum degree is 



colored with first legal color, in the next rounds the uncolored nodes with maximum saturation 

degrees in their neighborhood are colored with their first legal color. If two nodes have same 

saturation degrees, such as A, B and E in round two, the nodes with greater random numbers 

color themselves.  

 
Figure 3. A sample execution of D_Dsatur algorithm 

5. PERFORMANCE EVALUATION 

DLF and D_Dsatur algorithms are also tested for large graph with varying node count and 

densities to compare them in terms of number of colors used, message counts and round counts. 

The algorithms are implemented in C language. The distributed environment is provided by 

using a synchronous thread based simulator. The simulator provides a library [44] for message 

passing between threads. Random graphs are generated and nodes communicate with each other 

by using the functions in the library. The simulator with a sample application can be 

downloaded from [45].  

5.1 Theoretical Evaluation 

When a distributed graph coloring algorithm is evaluated theoretically, there are two important 

measures to consider. The first important measure is time complexity of the distributed 

algorithm. The second important thing is message complexity of the distributed algorithm.  

Both DLF and D_Dsatur algorithms use at most ( 1) colors, and they are not effective 

if ( )n  . But, in practice graphs are sparse and numbers of used colors are nearly optimal 

[31]. Both algorithms produce optimal colorings for complete k-partite graphs, crown graphs, 

wheels. 

Hansen et al. claims that DLF algorithm runs in 
2( log )O n rounds for random graphs, where n 

is number of vertices and  denotes the largest vertex degree. The detailed proof of time 

complexity of DLF is given in [42], but message complexity is not given. For our 

implementation of DLF, in each round there are at most 
2( )O n messages are sent, each node 

sends either DATA or COLOR message in each round and each node has at most n-1 neighbors, 

so message complexity is computed as
2 2( log )O n n . 

To the best of our knowledge, there is not a detailed research about time complexity of 

distributed Dsatur algorithm. In [44], it is claimed that any distributed implementation of 

saturation based coloring algorithms require ( )n rounds, so it is not suitable for distributed 

applications. In practice, at each round, at least one node gets colored and D_Dsatur algorithm 



needs ( )O n rounds to complete coloring. The message complexity can be calculated as 
3( )O n , 

where at each round at most 
2( )O n  messages are sent such as DLF algorithm. Detailed analysis 

is required on the time complexity of D_Dsatur algorithm. 

5.2 Practical Evaluation 

DLF and D_Dsatur algorithms should also be compared experimentally in terms of number of 

colors used, number of total messages sent and execution time. It is not appropriate to use 

running time of algorithm for execution time comparison. It is because running time of the 

algorithm not only depends on the size of input, but also it depends on other running processes 

on the same processor. So number of rounds required to complete coloring is used for execution 

time comparison.  

Experimental comparison of DLF and D_Dsatur algorithms are given in Table 1. Node count 

varies from 50 to 200, for each node count 3 different graphs are generated with increasing edge 

densities. Both algorithms are evaluated in terms of number of colors used, number of total 

messages sent and number of total round for each graph. 

Experimental results show that DLF algorithm shows poorer performance than D_Dsatur 

algorithm in terms of total number of colors used. For the graphs of same size, D_Dsatur uses 

less different colors than DLF algorithm. When node count is constant and edge density of the 

graph increases, the number for colors used also increases for both algorithms. These results are 

very close to the practical comparisons of sequential LF and Dsatur algorithms such as in  

[27, 47]. 

Table 1. Experimental comparison of DLF and D_Dsatur algorithms 

No.of 

Vertices 

No.of 

Edges 
No. of Colors Used No. of Total Rounds No. of Total Messages 

  
DLF D_Dsatur DLF D_Dsatur DLF D_Dsatur 

50 125 4 3 8 12 704 860 

 
625 11 10 22 34 10369 15109 

 
1250 15 14 25 36 15023 20091 

100 500 7 6 13 20 5675 7730 

 
2500 21 20 43 68 77411 134612 

 
5000 26 23 52 73 125438 171920 

200 2000 9 8 22 33 34739 49644 

 
10000 36 32 94 136 623642 1024991 

 
20000 44 42 110 143 979443 1429561 

According to Table 1, DLF algorithm generally uses one or two more colors than D_Dsatur for 

each node count and edge density. For graphs with 50 nodes, number of colors used for sparse 

graphs is 7%, for mid-sparse graphs it is 21% and for dense graphs it is 29% of node count in 



average of two algorithms. When number of nodes increase to 100, the average values of colors 

used are 6.5%, 20.5% and 24.5% of node count. For graphs of size 200, the average values of 

colors used are 4%, 17% and 21.5% of node count. When graph keeps same node count and 

gets denser, the number of colors used increases significantly. But when the node count of graph 

increases the percentage of number of colors used decreases. 

DLF algorithm shows better performance than D_Dsatur algorithm in terms of execution time. 

It is because DLF needs fewer rounds for coloring than D_Dsatur. For graphs with 50 nodes, 

number of rounds for sparse graphs is 32%, for mid-sparse graphs it is 13% and for dense 

graphs it is 11% of node count for DLF algorithm. For each graph, D_Dsatur uses rounds more 

than approximately 52% of rounds that DLF algorithm uses. For large graphs it is more 

practical to choose DLF when number of colors used is not very critical.  

The numbers of total messages sent are also larger for D_Dsatur, it is because D_Dsatur needs 

more rounds to finish coloring. In Table 1, for message counts only DATA and COLOR 

messages are considered, other synchronization messages are not considered. For each graph 

D_Dsatur sends messages more than approximately 50% of messages that DLF algorithm sends. 

Experimental results are strongly related to theoretical time and message complexities.   

6. CONCLUSION 

Distributed graph coloring has many applications in wireless ad hoc and sensor networks. The 

most common applications are assigning frequency, time and code slots to nodes in a shared 

wireless medium. Other important applications include finding independent sets, dominating 

sets and forming clusters of nodes in wireless networks.  

Finding optimal coloring of a graph is NP-complete so we need some heuristics to solve this 

problem in a sub-optimal way. Many heuristics and algorithms have been proposed in this field 

and each of them tries to improve the existing algorithms in terms of execution time or number 

of colors used. Greedy algorithms are efficient approaches among the other algorithms to solve 

the graph coloring problem.  

In this paper, two greedy distributed graph coloring algorithms DLF and D_Dsatur are 

examined in detail. They are implemented and tested for different graphs; their performances 

are compared in terms of number of colors used, total rounds and total messages sent. 

Experimental results show that DLF algorithm shows poorer performance than D_Dsatur 

algorithm in terms of total number of colors used whereas DLF algorithm shows better 

performance than D_Dsatur algorithm in terms of execution time and total messages sent. The 

results show us that DLF is suitable for energy constrained sensor networks, on the other hand 

D_Dsatur can be a good choice for IEEE 802.11 based ad hoc networks.  
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